香山院 - 仙侠小说 - 求道九州在线阅读 - Ultimate L

Ultimate L

    Luminy–HughWoodin:UltimateL(I)

    TheXIInternationalWorkshoponSetTheorytookplaceOctober4-8,2010.ItwashostedbytheCIRM,inLuminy,France.IamverygladIwasinvited,sinceitwasagreatexperience:TheWorkshophasatraditionofexcellence,andthistimewasnoexception,withseveralverynicetalks.Ihadthechancetogiveatalk(availablehere)andtointeractwiththeotherparticipants.Thereweretwomini-courses,onebyBenMillerandonebyHughWoodin.Benhasmadetheslidesofhisseriesavailableathiswebsite.

    WhatfollowsaremynotesonHugh’stalks.Needlesstosay,anymistakesaremine.Hugh’stalkstookplaceonOctober6,7,and8.Thoughthetitleofhismini-coursewas“Longextenders,iterationhypotheses,andultimateL”,Ithinkthat“UltimateL”reflectsmostcloselythecontent.ThetalkswerebasedonatinyportionofamanuscriptHughhasbeenwritingduringthelastfewyears,originallytitled“Suitableextendersequences”andmorerecently,“Suitableextendermodels”which,unfortunately,isnotcurrentlypubliclyavailable.

    ThegeneralthemeisthatappropriateextendermodelsforsupercompactnessshouldprovablybeanultimateversionoftheconstructibleuniverseL.Theresultsdiscussedduringthetalksaimatsupportingthisidea.

    UltimateL

    Advertisements

    REPORTTHISAD

    I

    Letδbesupercompact.ThebasicproblemthatconcernsusiswhetherthereisanL-likeinnermodelN\subseteqVwithδsupercompactinN.

    Ofcourse,theshapeoftheanswerdependsonwhatwemeanby“L-like”.Thereareseveralpossiblewaysofmakingthisnontrivial.Here,weonlyadopttheverygeneralrequirementthatthesupercompactnessofδinNshould“directlytraceback”toitssupercompactnessinV.

    Recall:

    WeuseP_δ(X)todenotetheset\{a\subseteqX\mid|a|<δ\}.

    Anultrafilter(ormeasure)UonP_δ(λ)isfineiffforall\alpha<λwehave\{a\inP_δ(λ)\mid\alpha\ina\}\inU.

    TheultrafilterUisnormaliffitisδ-completeandforallF:P_δ(λ)oλ,ifFisregressiveU-ae(i.e.,if\{a\midF(a)\ina\}\inU)thenFisconstantU-ae,i.e.,thereisan\alpha<λsuchthat\{a\midF(a)=\alpha\}\inU.

    δissupercompactiffforallλthereisanormalfinemeasureUonP_δ(λ).

    Itisastandardresultthatδissupercompactiffforallλthereisanelementaryembeddingj:VoMwith{mcp}(j)=δ,j(δ)>λ,andj‘λ\inM(or,equivalently,{}^λM\subseteqM).

    Infact,givensuchanembeddingj,wecandefineanormalfineUonP_δ(λ)by

    A\inUiffj‘λ\inj(A).

    Conversely,givenanormalfineultrafilterUonP_δ(λ),theultrapowerembeddinggeneratedbyUisanexampleofsuchanembeddingj.Moreover,ifU_jistheultrafilteronP_δ(λ)derivedfromjasexplainedabove,thenU_j=U.

    AnothercharacterizationofsupercompactnesswasfoundbyMagidor,anditwillplayakeyroleintheselectinthisreformulation,ratherthanthecriticalpoint,δappearsastheimageofthecriticalpointsoftheembeddingsunderconsideration.Thisversionseemsideallydesignedtobeusedasaguideintheconstructionofextendermodelsforsupercompactness,althoughrecentresultssuggestthatthisis,infact,aredherring.

    Thekeynotionwewillbestudyingisthefollowing:

    Definition.N\subseteqVisaweakextendermodelfor`δissupercompact’iffforallλ>δthereisanormalfineUonP_δ(λ)suchthat:

    P_δ(λ)\capN\inU,and

    U\capN\inN.

    ThisdefinitioncouplesthesupercompactnessofδinNdirectlywithitssupercompactnessinV.Inthemanuscript,thatNisaweakextendermodelfor`δissupercompact’isdenotedbyo^N_{mlong}(δ)=\infty.Notethatthisisaweaknotionindeed,inthatwearenotrequiringthatN=L[\vecE]forsome(long)sequence\vecEofextenders.TheideaistostudybasicpropertiesofNthatfollowfromthisnotion,inthehopesofbetterunderstandinghowsuchanL[\vecE]modelcanactuallybeconstructed.

    Forexample,finenessofUalreadyimpliesthatNsatisfiesaversionofcovering:IfA\subseteqλand|A|<δ,thenthereisaB\inP_{δ}(λ)\capNwithA\subseteqB.Butinfactasignificantlystrongerversionofcoveringholds.Toproveit,wefirstneedtorecallaniceresultduetoSolovay,whousedittoshowthat{\sfSCH}holdsaboveasupercompact.

    Solovay’sLemma.Letλ>δberegular.ThenthereisasetXwiththepropertythatthefunctionf:a\mapsto\sup(a)isinjectiveonXand,foranynormalfinemeasureUonP_δ(λ),X\inU.

    ItfollowsfromSolovay’slemmathatanysuchUisequivalenttoameasureonordinals.

    Proof.Let\vecS=\leftbeapartitionofS^λ_\omegaintostationarysets.

    (WecouldjustaswelluseS^λ_{\le\gamma}foranyfixed\gamma<δ.Recallthat

    S^λ_{\le\gamma}=\{\alpha<λ\mid{mcf}(\alpha)\le\gamma\}

    andsimilarlyforS^λ_\gamma=S^λ_{=\gamma}andS^λ_{<\gamma}.)

    Itisawell-knownresultofSolovaythatsuchpartitionsexist.

    Hughactuallygaveaquicksketchofacrazyproofofthisfact:Otherwise,attemptingtoproducesuchapartitionoughttofail,andwecanthereforeobtainaneasilydefinableλ-completeultrafilter{\mathcalV}onλ.Thedefinabilityinfactensuresthat{\mathcalV}\inV^λ/{\mathcalV},contradiction.Wewillencounterasimilardefinablesplittingargumentinthethirdlecture.

    LetXconsistofthosea\inP_δ(λ)suchthat,letting\beta=\sup(a),wehave{mcf}(\beta)>\omega,and

    a=\{\alpha<\beta\midS_\alpha\cap\betaisstationaryin\beta\}.

    Thenfis1-1onXsince,bydefinition,anya\inXcanbereconstructedfrom\vecSand\sup(a).AllthatneedsarguingisthatX\inUforanynormalfinemeasureUonP_δ(λ).(ThisshowsthattodefineU-measure1sets,weonlyneedapartition\vecSofS^λ_\omegaintostationarysets.)

    Letj:VoMbetheultrapowerembeddinggeneratedbyU,so

    U=\{A\inP_δ(λ)\midj‘λ\inj(A)\}.

    Weneedtoverifythatj‘λ\inj(X).First,notethatj‘λ\inM.Lettingau=\sup(j‘λ),wethenhavethatM\models{mcf}(au)=λ.Since

    M\modelsj(λ)\geauisregular,

    itfollowsthatau=j(\left).InM,theT_\betapartitionS^{j(λ)}_\omegaintostationarysets.Let

    A=\{\beta